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INTRODUCTION

Let qo, 1] be the space of all complex valued continuous functions with
the norm

Ilfll", = sup [j(x)l,
xE[O,I]

and LP[O, 1], 1 ~ p < 00, be the space of all complex valued measurable
functionsf, for which

(f l )I/Jl
Ilfllp = 0 I j(x)IP dx

is finite. The famous theorem of K. Weierstrass [18] states that the monomials
{I, x, x2, •.• } are a fundamental sequence in qo, 1], that is, a sequence of
elements whose linear combinations are dense in qo, 1]. This theorem has
been generalized in two different directions by C. Muntz [13], O. Szasz [16],
and D. Jackson [8].

Muntz's theorem states that a sequence of monomials {I, X"l, X"2, ... } of a
real positive increasing sequence {A'k}~~1 is fundamental in qo, 1] if and only
if L:;=I 1JAk diverges. Muntz's theorem and its LP analog have been extended
for complex exponents Ak in the following theorem and its corollary.

THEOREM (0. Szasz). Let.li = {Ak}~=1 be a sequence of distinct complex
numbers with real parts exceeding -to Then the functions {X"l, X"2, ... } are
fundamental in V[O, 1] if and only if

I [(1 + 2Re Ak)/(l + [Ak 1
2
)] = 00.

k~1
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14 MANFRED V. GOLITSCHEK

Let the real parts ofall numbers Ak (k = 1,2,...) be positive. Then thefunctions
{1, X~l, X~2, ... } are fundamental in qo, I], if

'"I [Re Akl(l + I Ak 1
2
)] = 00,

k=1

and are not fundamental in qo, 1], if

I [(1 + Re Ak)/(1 + I Ak 1
2)] < 00.

k=1

(For the proof compare also R. Paley and N. Wiener [IS, Chap. II].)
As the continuous functions are dense in LP[O, 1], 1 ~ p < 00, we easily

obtain the following. (We write Loo[O, 1] = qO,I].)

COROLLARY. Let A be a sequence of distinct complex numbers with real
parts exceeding a positive number E. Then the functions {I, X~l, X A2 , ... } are
fundamental in UfO, 1], I ~ p ~ 00, if and only if

'"I (Re Akll Ak 1
2
) = 00.

k=1

(1)

THEOREM (D. Jackson). For each function fE qo, I], there exists an
ordinary algebraic polynomial Pn ofdegree n such that

Ilf - Pn II", ~ Kwoo(f, lin),

where K is an absolute real constant and

w",(f; 8) = sup Ilj(x + t) - j(x)lloo,
Itl<6

°~ 8 ~ 1,

(2)

denotes the modulus of continuity off

The above Jackson theorem holds also for all LP spaces, 1 ~ p < 00,

if in (2) the modulus of continuity is replaced by the analogous U modulus of
continuity

wp(f; 8) = sup Ilj(x + t) - j(x)ll p ,
Itl<6

°~ 8 ~ I,fE UfO, I],

where we continue f by j(x) = j(-x) for -1 ~ x < 0, j(x) = j(2 - x)
for 1 < x ~ 2. (The theorems of Jackson and MUntz and some other results
we have to apply are usually proved for real valued functions f and real
coefficients. It is easy to verify that they are also valid in the complex case).

In recent years D. Newman [14], J. Bak and D. Newman [2, 31, T. Ganelius
and S. Westlund [4], D. Leviatan [10], and the author [5, 6] combined the
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theorems of Jackson and Muntz and found several best or almost best
"Jackson-Muntz theorems" for A-polynomials with real exponents A. In
this paper we combine the theorems of Jackson and Szasz and obtain the
corresponding "Jackson-Muntz-Szasz theorems" for A-polynomials with
complex exponents A. All results of my earlier papers and almost all results
of the other authors mentioned above can be derived easily as special cases.

1. THE BASIC METHOD

Let A = {'\k}~~l denote a sequence of distinct complex numbers with
positive real parts. For fE UfO, 1], I ,s;: p ,s;: 00, let

be the degree of best approximation of fin UfO, I] by A-polynomials of
"degree" s. For each ordinary algebraic polynomial

"P,,(x) = L aq"x
q

q=O

we obtain an upper bound for EsCf; A)p , if we replace each monomial x'l
(q = 1,2,... , n) of P" by its best A-polynomial of degree s. Thus

"Elf; A)p ,s;: Ilf - P" lip + L I aq" I E.l'C
q
;.11)1)'

q~l

(3)

This is the essential idea. To apply the inequality (3) efficiently (given A, P,f,
and s) we have to find an appropriate integer n depending on s and a good
approximating polynomial P" with relatively small coefficients aqn

(q = 1,... , n). Such polynomials are provided in the following.

LEMMA 1. For any functionfE UfO, 1], I ~ p ~ 00, and any n ;? I there
exists an even polynomial P" such that

Ilf - P" lip ~ CpwvCf; lin),

I aq" I ~ Dpwp(f; lin) nq+l/Plq! , q = 1,2,... , n,

(4)

(5)

(a2k+1." = Ofor k = 0, I, ...), where Cp and D p are absolute constants.

Proof. We define the even function FE U[ - 2, 2] by

If(X)
F(x) = f(2 - x)

for 0 ~ x ~ 1,
for I ,s;: x ~ 2.
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Then Jackson's theorem in £7'[-2, 2], 1 < p < 00, states that there exists
for any m ;?: 1 an' even polynomial Pm , for which

(6)

is satisfied, where CIJ' is an absolute constant and wiF; .) refers to the
interval [-2,2]. We write w(llm) = CIJ'wiF; 11m) and define the integer t by
2t < n < 2t+l. For any integers n1 , n2 with 1 ~ n1 < n2 ~ 2nl , it follows
from a result of G. K. Lebed' [9] that

where D,p' is an absolute constant. Using (6) we therefore obtain

II Pnz - Pn11IC[-1.1] ~ 2DIJ'n~/IJw(llnl)'

Finally, applying an inequality of A. F. Timan [17,4.8.81] we have, for
q=1,2,... ,n,

(7)

As wIJ(F; 0) < C;WIJ(f; 0), °~ 0 ~ 1, we conclude from (6) that the
polynomial P n satisfies (4). Moreover, the coefficients a2k+l. n = 0
(k = 0, 1'00') since Pn is even. Applying (7) and the inequality

t

I aqn I < [aqn - aq2 t i + L I aq2; ~ aq2i-l I + I aq1 I
i=l

for all even indices q = 2,4, ... we obtain (5). Thus, the proof of Lemma 1 is
complete.

In our next Lemma we give upper bounds for the best approximations

of the monomials xq, where q may be any real number exceeding -lip.
(Analogous results for complex numbers q are also valid.) For the LV norms
with 1 < p < 2 we have inserted a positive number E. This is perhaps
unnecessary, but we can only prove the inequality (11).

LEMMA 2. Let A be a sequence of complex numbers with real parts
exceeding -lip. Then,for any real number q > -lip and any integer s ;?: 1,

i"< 1 nS I q - Ak I .
.G s(Xq ;A)2 = ------:::-

(2q + 1)1/2 k=l I q + '\k + 1 I '
('6)



(11)
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E (xq • A) ::;::: IT· I q - Ak I (9)
s , 00"'" I +' I

k~l q "k
E ( q. A) ::;::: A I q I ITs I q - Ak I 10)

S x, p "'" p (2q + 2Ip)1/2 k~l I q + Xk + 21p I (

for 2 < p < 00, where A p = (1 + pI2)1/2+l/P;

C(2-P)/(2P) S I q - Ak I
E.(xq; A)p ~ IT :----:-;,~----=--:=:--:---...,~

(2q + 2(1 - €)lp)1/2 k~l I q + "k + 2(1 - €)Ip I

for 1 ~ p < 2 and any 0 < € < 1 + pq.

(Here Xk denotes the conjugate complex number of Ak .)

Proof The equality (8) has been proved in N. 1. Achieser [1, Sect. 14] by
Hilbert space methods. The inequality (9) has bene proved by the author
[5, pp. 73-74] for real positive numbers q and Ak • With little change this proof
is also valid for complex numbers q and Ak with positive real parts.

Let 1 ~ p < 2, € as above, and y = (2 - p - 2€)/(2p). Then, for any
complex numbers ak (k = 1, ... , s),

S

~ €-(2-P)/(2P) II xHY - L akx~k+Y II '
k~l 2

where we have applied Holder's inequality. If we choose ak (k = 1,... , s)
optimally and apply (8), we immediately obtain (11). The inequality (10)
will follow from the next

LEMMA 3. Let 1 ~ r < p < + 00, q> -lip, q =1= 0, Re Ak > -lip,
Ak =1= 0 (k = 1,... , s). There exists a constant A(r, p) depending only on rand p
with the following property: for any complex coefficients ak (k = 0, 1,... , s)
satisfying

S

L ak = 1,
k~O

the inequality

holds, where bk = akAklq (k = 1,... , s).

(12)

(13)
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Proof We denote

s

g(X) = X
IJ

- ao - L akxAk,
k~I

8

hex) = xlJ
-

I
- L bkxAk

-
i

.
k$I

Then, since g(I) = 0 and g'(x) = qh(x),

(fl )I/P (fl III IP )l /P
1= 0 Ig(x)IP dx = Iq I 0 '" hey) dy dx .

Let (); denote a real number satisfying 1 - I/r < <X < 1 - l/r + lip.
(For example <X = 1 - Ilr + I/(2p).) Using Holder's inequality for rand
r' = rl(r - 1) we obtain

lex) = Irhey) dy 1= Iry-a(yah(y)) dy I

:( K1X-a+1/r' (f Iyah(yW dyt
r
,

'"
where

if r > 1,
if r = 1.

Therefore,

(
rl lf1 IPlr )I/PI ~ I q I KI ), Xr-1-ra Iyah(y)\r dYI. dx •
o '"

(14)

In (14) we apply for p* = plr and

lxr-1-ro: 1yah(y)lr,
<p(x, y) = 0,

ifx:S;y:(I,
if 0 :( y < x,

the generalized Minkowski inequality for integrals, i.e.,

p* :)0 1 (cf. N. 1. Achieser [1, Sect. 5]). Then,

(f l lfl riP )l/r
I:S; 1q I K1 0 0 I <p(x, y)!plr dx\ dy

(f1 lfY riP )l/r
= I q ! K1 0 I yo:h(y)[r 0 X(r-I-ro:)plr dx\ dy .
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Therefore, the inequality (13) follows immediately for

19

This concludes the proof of Lemma 3.
Now we can easily prove the inequality (10): For 2 < p < 00 and r = 2

we choose the coefficients bk (k = 1,... , s) in (13) optimally. Then we define

s

ao = I - I ak'
k~1

It follows from (13) that

If we choose ex = (4 + p)/(4 + 2p), then

A v = (2ex - 1)-1/2(1 + (t - ex) p)-1/V = (1 + p/2)1/2+l/v .

In (16) we apply the equality (8) and obtain (10). Thus, the proof of Lemma 2
is complete.

Combining the inequality (3) with the results of Lemma 1 and 2 we have
proved the following

THEOREM 1. Let.li = {Ak}~~l be a sequence of distinct complex numbers
with positive real parts. Let sand n be any positive integers. Then, for
fE pro, 1],

where

R (E) = 11, if2 ~p ~ 00, d (E) = 10' if2 ~p ~ 00,
v C(2-V)/(2V), if 1 ~ p < 2, v 2€/p, if 1 ~ p < 2.

(19)

Cv and D v* are absolute constants, and E is any positive, sufficiently small
number.

Proof We apply the inequality (3) together with Lemmas 1-2 and use
Stirling's formula: q! > (27T)1/2 qHl/2e-Q. We notice that a1n = 0, as the
polynomial Pn of Lemma 1 is even.
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2. UPPER BOUNDS FOR THE DEGREE OF BEST APPROXIMATION

It seems to be impossible to give a reasonable general formula for the degree
of best approximation Es(f; A)j) which is valid for all sequences A simul­
taneously. Therefore we will examine the most important types of sequences A
separately. The proofs of these theorems, however, are very similar: we always
apply Theorem I, where for a given integer s an appropriate integer n has
to be chosen. It will be very convenient to evaluate the products of (18) by
the following

LEMMA 4. Let q and Re Ak (k = 1,..., s) be positive. Thenfor any 0 ~ 0,

S I q A. 1 ( S Re Ak )IT - k ~ exp - (2q + S) I 2 + 1 A 12 + 0 R A •
k-l 1q + Xk + 8 I k=l q k e k

Proof Let Olk = Re Ak • Then,

We apply the inequality (1 - x)j(l + x) ~ e-2"', x ~ 0, with

(20)

and obtain (20).

(A) Let the sequence A of complex numbers with positive real parts
satisfy the condition

1 Ak 1
2 ~ Nk Re A.k (k = 1,2,...), (21)

where M > 0, N > 0 are given real constants.

LEMMA 5. If (21) holds, there exists a constant B1(M, N) such that for all
positive integers q and s, and 0 ~ 0 ~ 2,

Ii I q - Ak I ~ B/Je3q/N (qjM)(2qHl/N cp(S)-2H, (22)
k=l I q + Xk + 8 I

where

(

S Re A.k )

cp(s) = exp k~ TX;i2 . (23)
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Proof Let CXk = Re'\k' Applying (21) we obtain

21

~ (3j2 + log(qjM))jN + '8jq2 + fJ7Tj(2Mq). (24)

The inequality (22) follows immediately from Lemma 4 with B1 ~

exp(4 + 3j(2N) + 27TjM).
We are led to the following by Lemma 5.

THEOREM 2. Under the condition (21) there exists a constant KACp, M, N)
such thatjor any jE LP[O, 1], ] ~ p ~ 00, and any s ); ]

where

CX
p

= 1~2 - p)/(2 + 4p)

if 0 < N < 2,

if N); 2,

if2 ~p ~ 00,

if 1 ~p < 2,

(25)

(26)

and <pes) is defined by (23).

Proof Let K; (j = 1,... ,4) denote positive numbers depending only on
p,M,N.

(a) Let 0 < N < 2. We choose e = 1 - N/2 and the integer n such
that

where K* = 2e1+3/NM-2/N.

Then, we obtain from Theorem] and Lemma 5 (with '8 = 2jp - die) ); 0)

n

Ins ~ B16M-6jN L nHljPq-H(2H6)/N(K*/2)q cp(S)-2Q-6
Q~2

n

~ K 1 L q6jN2-Q<p(S)NjP-8 ~ K 2 ,
Q~2

since Njp - ;) :(; (N - 2 + 2 €)jp = O.
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Applying (17) and the property

wif; vt) ~ (v + I) wif; t), v ~ 0, t ~ 0, (27)

(28)

of the U modulus of continuity, we obtain (25).

(b) Let N ~ 2. We choose e = min{l; (log rp(S))-l} and the integer n
such that

Then, from Theorem I and Lemma 5 (with 0 = 2/p - d1J(e) ~ 0)

n
Ins ~ K a L q6/N2-QelY.pCq+l/P)rp(S)dp«).

Q~2

Since

we have
Ins ~ KiRvCe))-l

and from (17), (28), and (27) we obtain the inequality (26).

Remark. If A is a real sequence, the condition (21) is equivalent to
Ak ~ Nk (k = 1,2'00')' Then rp(s) = exp(L~=l I/Ak ), and our Theorem 2
contains the main results of the above mentioned papers [2-4, 10, 14].
Compare also [5, 6].

(B) Let the sequence A of complex numbers with positive real parts
satisfy the condition

!AkI2~NkReAk (k= 1,2'00')' (29)

where °< M ~ N < + OCJ are given real constants.

LEMMA 6. If (29) holds, there exists a constant BzCM, N) such that for all
positive integers q and s, and°~ 0 ~ 2,

IT
s ! q - Ak I

~ B2{q/(Ms)}C2Q+6)/N.
k~l I q + '\k + 0 I

Proof Applying (29) we obtain

(30)

S CXk I J.s x dx
{;l q2 + I Ale 1

2+ OCXk ~ N 1 (q/M)2 + {x + 8/(2N)}2

1 (q/M)2 + {s + 8/(2N)}2 2

~ 2N log (q/M)2 + {I + o/(2N)}2 - OMTT/(4qN )

and Lemma 4 leads us immediately to the inequality (30).
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From Lemma 6 we have the following.

23

THEOREM 3. Under the condition (29) there exists a constant KB( p, M, N)
such that for any f E LP[O, 1], 1 ~ p ~ 00, and any s ;? 1

and

if 0 < N < 2, (31)

if N;? 2, (32)

where

(Xp = 1~2 - p)/(2 + 4p)
if2 ~p ~ 00,

if 1 ~p < 2.

Proof Let K j (j = 1,... ,4) denote positive numbers depending only on
p,M,N.

(a) Let 0 < N < 2. We choose E = 1 - NI2 and the integer n such
that n - 1 < K*-N/2S ~ n, where K* = 2eM-2/N. Then, from Theorem 1
and Lemma 6 (with S = 21p - diE) ;? 0),

n
Ins ~ B2M-b/N L nH1 / Pq-H(2H 6)/N(K*/2)Q r(2Ha)/N

q=2

n
~ K1 L qa/N2-Qsl/p-a/N ~ K 2 ,

q~2

since lip - SIN ~ (1 - 21N + 2EIN)lp = O. Therefore, the inequality (31)
follows from (17) and (27).

(b) Let N ;? 2. We choose E = min{l; (Iog(s + l))-l} and the integer n
such that

Then, from Theorem 1 and Lemma 6 (with S = 21p - dp(E) ;? 0)

n
Ins ~ K

3
L q6/N2-qE~p(q+1/P)Sdp«)!N.

q~2

Consequently, we obtain

since

(33)

(34)
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Then, the inequalities (17), (34), and (27) lead us to (32), and the proof of
Theorem 3 is complete.

COROLLARY. Let 11 be a real sequence satisfying

Mk ~ A;" ~ Nk (k = 1,2,...), (35)

where 0 < M ~ N < + 00 are given real constants. Then inequality (31)
holds if N < 2 and inequality (32) holds if N ?o 2.

Proof For real numbers A7, the condition (29) is equivalent to (35) and
Theorem 3 is applicable.

(C) The sequences 11 in the preceding Theorems 2,3 satisfy I Ak I ?o Mk
(k = 1,2,...). Our method described by Theorem 1, however, is valid for
any sequence 11 of complex numbers with positive real parts. As an example,
for which the above property [ Ak I ?o Mk does not hold, we now discuss
complex sequences 11 with a finite limit point, i.e.,

lim A = A*k....:,.X) k , Re,\* >0. (36)

LEMMA 7. If (36) holds, there exist positive numbers B3 and c depending
only on 11 such that for all positive integers q and s, and 0 ~ 0 ~ 2,

(37)

Proof Let n:* = Re A*. There exists an integer ko such that n:k =
Re'\k ?o n:*/2 and I'\k I ~ 2 [ ,\* I for all k > ko . Applying Lemma 4,
we obtain for all s ?o 2ko

Ii I q - Ak I ~ Ii I q - Ak I ~ exp (-2q ± n:k )
k=l I q + Ak + 0 I ko+l I q + Ak [ ko+l q2 + I '\k 1

2

~ exp(-q(s - ko) cx*/(q2 + 4 I .\* 1
2)) ~ e-csjq,

where c ~ n:*/(2 + 8 I A* 1
2). Therefore, (37) holds for all s ?o 1.

THEOREM 4. Under the condition (36) there exists a constant Kc depending
only on 11 and p such that for any f E prO, 1], 1 ~ p ~ 00, and any s ?o 1

(38)

Proof We choose E = 1 and the integer n such that

n - 1 < {csj2}1/2 ~ n.
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Then, from Theorem 1 and Lemma 7 (with () = 21p - diE) ?o 0),

n

1 :s::: B " nH1 / P(elq)q e-cs /
q :s::: B 'ns '.::::::: 3 LJ ........-::::. 3'

q=2

25

where Ba' depends only on A. Therefore the inequalities (17) and (27) lead us
directly to (38), which concludes the proof of Theorem 4.

3. LOWER BOUNDS FOR THE DEGREE OF BEST ApPROXIMATION

We now want to show that the upper bounds obtained in Theorems 2, 3
are essentially best possible. (We conjecture that the upper bounds of
Theorem 4 for converging sequences A are also best possible, though we
cannot prove it.) No inverse theorems are given. Instead, we either test our
results by special functions f or apply some results of the theory of widths.

LEMMA 8. Let A be a sequence of complex numbers with real parts
exceeding -lip. Then for any real number q > -lip, q =1= 0, there exists a
number C( p, q) depending only on p and q such that for any s ?o 1

and

E (xq • A) >-: c fI I q - Ak I
o , p?, k=1 Iq + Ak + 21p I 1~p~2 (39)

2 <p ~ 00, (40)

where E is any real number with 0 < E ~ 1.

Proof (a) Let 1 ~ p < 2. For AO+1 = 0 we obtain from Lemma 3
(after simple substitutions)

0+1
II x a- 1/2+1lp - a o - L akxAk-1/2+1/P II

k=l 2

~ I q - 1/2 + lip IA(p, 2)11 x
q

- f bkX~k II .
k=l P

We are led to the inequality (39), if we choose bk (k = 1,... , s + 1) optimally
and apply (8).
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(b) Let 2 < p < 00. For any complex numbers ak , cx = 1 - E - 21p,
and Ao = 0 we have

II xq-~/2 - to akxAk-~/2112 = (fo
1

x-~ Ix
q

- to akxAk rdxf
/
2

< (1 - cxr'rll (2r') II x
q

- f akxAk II '
k=O P

where we have applied Holder's inequality for r = pl2 and r' = pl(p - 2).
Since 1 - cxr' = Epl(p - 2), we obtain the inequality (40) if we choose ak
(k = 0,... , s) optimally and apply (8).

In our next theorem we will apply Lemma 8 and demonstrate that the upper
bounds obtained in Theorem 2 for N ;): 2 are best or almost best possible,
at least for the functions g(x) = xq, 0 < q + lip < 1.

THEOREM 5. Let.l1 satisfy (2l)for an N ;): 2. Let q be a real number with
o < q + lip < 1. Then for the function g(x) = x q

, q =F 0, q ¢:.I1,

where

f3p = l~~ - 2)/(2p),
if I <p < 2,
if 2 < p < 00,

(41)

and Co depends only on p, q, and.l1.

Proof (a) As I Ak 1 ;): Mk, there exists an integer ko (depending on M)
such that for all k ;): ko , I A" 1 ;): 10 and, consequently,

1 Ak 1
2

- (4q + 28) CXk - 8 > 0,

where
I) _ \2Ip,

- 121p + E,

E > 0 sufficiently small. Then we have

if 1 <p < 2,
if2 <p:;::; 00,

>- C (fIS 1 Ak1
2

- (4q + 28) CXk - 8 )1 /2
yo 1 I A 12

"="0 k

;): C2 exp Gk~o log(1 - (4q + 28) cx,,/1 Ak 1
2»)

;): Ca<p(s)-2q-a, (42)

if we apply (in the last inequality) the property 1 A" 1
2 ;?: NkCXk , where N ;?: 2

and C1 , C2 , Ca are positive numbers depending only on p, q, and .11.
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(b) For 0 < q + lip < 1, q =F 0, I ~ p ~ 00, we notice that the
LP modulus of continuity of g(x) = xa satisfies

o~ t ~ I, (43)

for a positive number C4 , which depends only on p and q. Therefore, if
I ~ P ~ 2, we obtain from (39), (42), and (43) for 8 = 21p the inequality (41).
If 2 < P ~ 00, we choose E = {log ep(S)}-I, 8 = E + 21p. Then we obtain
the inequality (41) from (40), (42), and (43), which completes the proof of
Theorem 5.

We have demonstrated in Theorem 5 that for each sequence A satisfying
(21) with an N ~ 2 we can find functions g(x) = x q

, for which the upper
bounds (26) of Theorem 2 are best or almost best possible. However, it is
easy to find sequences A satisfying the condition (21) with°< N < 2 or (29)
with N ~ 2, for which the upper bounds (25) of Theorem 2 or (32) of
Theorem 3 are not best possible. The reason is that these conditions (Le., (21)
with 0 < N < 2 and (29) with N ~ 2) are still too general. Therefore we are
content to show that the upper bounds (25) and (32) are best possible at least
for the special sequences A * as follows.

Let A* satisfy

IlI.k 12 = Nk Re II.k (k = 1, 2, ...). (44)

(45)

Then the conditions (21) and (29) are satisfied. We have

()_ (~Rell.k) liN
ep s - exp k'::l~ ~ S •

Therefore, if N > 2, the upper bounds of (26) and (32) are identical and (32)
cannot be improved in the sense of Theorem 5. If 0 < N < 2, the inequalities
(25) and (31) are identical, i.e.,

(46)

Finally, from results of the theory of widths we realize that the "rate of
convergence IlsN in (46) for .11* and in (31) for general sequences A is best
possible in the function classes Lip e(lX, p) (i.e., the complex analog of
Lip(IX, P». We only have to consider the real and imaginary parts of the
functions f and the A-polynomials and apply the following.

LEMMA 9. Let 0 < IX ~ 1, 1 ~ P ~ 00. We denote A = Lip(lX,p) =
{IE U[O, 1] Ifreal valued, wp(f; t) ~ t" (0 ~ t ~ I)}. Then the sth widths of
the classes A are

(47)
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where the sth width is defined by

ds(A) = inf sup {inf Ilf - P lip},
X. lEA PEX.

(48)

and X s denotes any subspace of the real LP[O, 1] space of dimension s.

Proof The proof of (47) for p = 00 and further definitions and properties
of the width are described in G. G. Lorentz [11, Chap. 9]. If 1 ~ P < 00,

we combine [12, Theorems 10 and 6 (inequality (4))] of G. G. Lorentz and
obtain

(K is a positive constant).

The estimate of ds(A) from above follows, for instance, from (4) or (31).

Notes. 1. The method described in Theorem 1 also provides upper
bounds for the degree of best approximation for differentiable functions.
For more information see the author's paper [6], where this problem has been
discussed in great detail for real sequences A.

2. Recently, the author [7] has announced results on Jackson-Muntz
theorems for intervals [a, 1], a > O. The details including complex exponents
A have been published in [19]. For positive intervals, the "singular" point
x = 0 has less influence. Therefore the approximation properties of many
sequences A are much better than for the interval [0, 1]. Substituting

t E [A, B], xE[a,I],

we are led to the interesting equivalent problem where functions FE C[A, BJ
or FE LP[A, B], [A, BJ finite, are to be approximated by linear exponential
sums 2:~=1 akeAkt •
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